skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buckley, Jenni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to communicate technical information in written, graphical, and verbal formats is an essential durable skill for engineering students to develop as undergraduates and carry forward into the workplace. The importance of technical communication skills is emphasized in the core ABET outcome “3. an ability to communicate effectively with a range of audiences.” Undergraduate engineering programs tend to adopt one of two strategies for technical writing instruction, either offering a stand-alone course that is frequently taught out-of-discipline or embedding technical communications skills within-discipline in laboratory or design classes. Despite these efforts, employers still report that novice engineers’ technical communications skills do not meet industry expectations. Prior work by our group attempted to address this skills gap through the design and implementation of a unique stand-alone technical communications course that was specifically created for first-year mechanical engineering students and centered on multiple, industry-aligned modalities of communication. Preliminary evaluation of this new curriculum showed that students demonstrated substantive gains in self-efficacy for nearly all technical communication skills covered in the course, including synthesis of background research, graphical representation of data, basic statistical analyses, and composition of technical reports and presentations in a variety of formats. In this paper, we will extend our prior work by examining whether the skills emphasized in this stand-alone first year course are transferred into later courses within the discipline. Specifically, we will focus on three core skill sets: (1) writing clear, concise, and coherent technical narratives; (2) graphical representation of quantitative and qualitative data sets; and (3) basic statistical analyses, including linear regressions, one-way ANOVA, and propagation of error. We will follow a single cohort of mechanical engineering students (n=147), beginning with the stand-alone technical communications course taken in the spring of their freshmen year, through their two subsequent semesters of coursework involving discipline-specific design and laboratory-based courses. For two semesters, post-course surveys will be administered to students that assess self-efficacy for the three core skill sets as well as their perceptions of the value and applicability of the first-year technical communications course in their current coursework. Also, written deliverables for a subset of students will be evaluated by faculty instructors according to established technical communications rubrics. The results of this study will be used to refine our first-year technical communications course and modify the strategies that we are using in later lab and design courses to activate prior technical communications knowledge (e.g., review exercises, exemplars, and common rubrics). More broadly, our approach to developing and reinforcing industry-aligned technical communications skills throughout our undergraduate curriculum may be of interest to other programs seeking to improve student outcomes in this area. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Academic makerspaces represent an ideal opportunity to present engineering students with active, experiential learning opportunities that reinforce theoretical concepts through conceptual design and prototyping. When appropriately supported, experiential learning in makerspaces has the capacity to drive development of technical skills and positive self-efficacy among novice engineers. However, research suggests that students who identify as part of historically underrepresented groups (i.e. those who are not White and male) can experience makerspaces in ways that marginalize their success. Thus, care must be taken in makerspace design and operation to create an environment that has a positive impact on the success of all students. In this study, we consider the perceptions and experiences of women and underrepresented racial/ethnic minorities (URMs) in an academic makerspace at one large, research intensive institution. We surveyed 256 undergraduate mechanical engineering students to compare and contrast their self-efficacy, their perceptions of makerspace support, and their peer-to-peer interactions. We found that student self-efficacy for conceptual design and prototyping did not differ by race or gender. However, females reported they were more likely to have a positive experience in the makerspace when supported by a teaching assistant who was also female. Students who identified as URM were significantly more likely to report discomfort in working with peers in the makerspace. We anticipate the outcomes of this study will provide implications for faculty and staff makerspaces at other postsecondary institutions who aim to build an inclusive and accessible learning environment for all students. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Practicing mechanical engineers interface regularly with machinists to design and manufacture components in metal and other engineered materials. Direct, hands-on exposure to precision machining operations, like mill and lathe work, helps young engineers design manufacturable components and facilitates better collaboration with machinists. Mechanical engineering undergraduate programs have been cited for weaknesses in training students on industry-standard manufacturing practices. While there are several excellent examples in the literature of student manufacturing projects, these projects are relatively advanced on the whole, and they require extensive human and capital resources to deploy in large-enrollment classes. Prior investigators have conserved resources by teaming students on projects, which dilutes the hands-on manufacturing experience for individual learners. In this study, we present an introductory mill training exercise for engineering students that allows them to individually develop transferable machining skills but requires fairly modest resources. This exercise, which we call the “Mini-Mill Experience,” involves students individually manufacturing two separate parts with a hobby-grade mini-mill and then completing a written self-reflection documenting their procedures and final part inspection. Students first manufacture a simple part out of reusable wax with direct coaching from a teaching assistant. They then independently manufacture one of six different wooden Erector Set components. The Mini-Mill Experience is designed to give students firsthand experience and promote confidence with the basic mill controls and operations, e.g., changing out an endmill or squaring up a face, that are transferable to the full-sized mills they will use in later courses. The one-time equipment set-up costs for this exercise were approximately $60 per student, with recurring costs of less than $2 per student for stock material. Each student completed the exercise during a two-hour lab period, and it took approximately six weeks for all students in the course (ca. 170 students) to complete the exercise. All sessions were supervised by a machinist and one to two teaching assistants. To gauge the effectiveness of the Mini-Mill Experience, a survey was distributed to all students in a freshmen year mechanical engineering design course. Survey responses indicated that the majority of the students (77%) had no prior experience with mills. Post-activity, students reported high levels of self-confidence in identifying the critical components of a mill and most basic mill operations, like proper use of a vise and tool changes. Compared to students who had prior mill experience, students with no prior experience demonstrated slightly lower self-efficacy with more advanced mill operations like creating blind holes and tapping threads. Post-activity, 75% of students agreed they “were not intimidated or afraid to use the mill to make a part,” and 90% said that they “looked forward to their next experience on a mill.” In this study, we developed an introductory manufacturing experience – the “Mini-Mill Experience” – that is effective in teaching basic mill operations, promotes students’ self-efficacy and enthusiasm for future machining experiences, and is cost effective and scalable for large class sizes. In these ways, it is a valuable addition to the existing literature and curriculum on manufacturing education for mechanical engineers. Future work by our group will focus on whether the skills acquired in the Mini-Mill Experience are transferable to manufacturing experiences later in the curriculum. 
    more » « less
  4. The ability to communicate technical information in written, graphical, and verbal formats is an essential durable skill for engineering students to develop as undergraduates and carry forward into the workplace. Employers have highlighted recent graduates’ inability to formulate tight, cohesive arguments for their engineering decisions, as well as difficulties adjusting their communication style for different audiences. Even though accreditation outcomes now explicitly include durable skills, such as “an ability to communicate effectively with a range of audiences,” prior research suggests that the field is still far from meeting industry expectations for proficiency in the varying modalities and styles of workplace communication. Laboratory courses are frequently relied upon to teach or reinforce writing and presentation skills. There are two major issues with this approach. First, in lab classes, the communication method is typically narrowly focused on reports that simulate writing for hypothesis-driven research projects, which fail to align with the design-based and project management aspects of professional engineering workloads. Second, lab courses that heavily emphasize technical communications frequently do so at the expense of technical knowledge, that is, the engineering concepts involved with the laboratory experiment. Many students already view communication skills as “soft” in comparison to technical knowledge; and this attitude affects their performance and retention. In this paper, we present the design and implementation of a stand-alone technical communications course that was specifically created for first-year mechanical engineering students and centered on multiple, industry-aligned modalities of communication. There are two major writing assignments in the course, both of which are open-ended “technical briefs” that involve background research, data analysis, and justification of an engineering decision for a design firm. For these major assignments, students individually submit a draft and receive detailed feedback for improvement before submitting the final versions. These two major assignments are scaffolded with weekly individual assignments that give students experience with a range of communication skills and modalities, e.g., using a reference manager and composing professional emails. To gauge the effectiveness of this stand-alone course in improving students’ technical communication skills, we conducted pre- and post-course surveys of all students enrolled in the course in 2023 (n=147), and we also tracked improvements in technical writing from draft to final form via established rubrics. Students demonstrated gains in self-efficacy for nearly all technical communication skills covered in the course as well as improved self-efficacy in different communication modalities, e.g., email, slide presentations, and executive summaries. The results of this evaluation suggest that a stand-alone, industry-centered technical communications course builds student competency with communication strategies used in the workplace. Future work will focus on whether students are able to transfer these skills into latter courses and ultimately their careers. 
    more » « less
  5. Statics is a core course taken by undergraduate mechanical engineers in their freshmen or sophomore years. The course involves characterizing structures that remain still (static) under load. Statics concepts traditionally build in complexity from isolated particles, then to rigid bodies, and finally to structures formed by multiple rigid bodies. Structural analysis, otherwise known as “frames and machines,” is thus one of the more complex topics covered in Statics because it integrates prior knowledge of particle and rigid body equilibrium with new concepts like two-force members and internal loads. Traditionally, students become proficient in structural analysis by solving textbook problems where implicitly or explicitly, these problems classify the structure as either a “frame” or a “machine.” This classification in problem wording hints at the solution method and typically requires students to calculate the loads at a particular connector or cross section at risk of failure, thus reducing opportunities for structural analysis before computation. In actual practice, structural analysis is less straightforward; engineers must thoughtfully examine the structure to determine the best method of analysis and likely failure location(s). Prior studies have introduced project-based learning (PBL) experiences for Statics courses that involve more realistic open-ended design, analysis, and validation. However, the prototyping component of these studies often falls short of actual practice by limiting students to scale model designs in craft grade materials, e.g., table-top sized bridges constructed from balsa wood. While economical and logistically simplistic, scale model designs do not reinforce industry-relevant design and fabrication skills, e.g., CAD/CAM and shop skills. Furthermore, scale models cannot be subjected to realistic loading conditions, which disconnects the analysis and validation portions of the project from actual engineering practice. In this study, we introduce a novel PBL exercise – the Wooden Bike Frame Challenge – for Statics courses that focuses on structural analysis and involves fabrication of a full-scale wooden bike frame using CAD/CAM techniques. The complete set of instructional materials, including problem statements, assignments, and rubrics, are included in this study for open-source use by other engineering educators. We evaluated the efficacy of this exercise in reinforcing students’ knowledge of statics concepts and previously acquired prototyping skills using a mixed-methods approach. Study subjects were sophomore year mechanical engineering students who were teamed (n=158 students in 37 teams). The effect of the PBL exercise on content knowledge was determined by comparing pre- and post-PBL solutions to structural analysis textbook problems, as well as the more open-ended structural analysis of the bike frame designs. Post-PBL, students individually completed a survey assessing their level of engagement with the analytical and design aspects of the PBL exercise and perceived value of the project. The Wooden Bike Frame Challenge demonstrates the value of embedding full-scale design experiences into core courses like Statics, not only for strengthening newly acquired knowledge like structural analysis, but also for reinforcing industry-standard design and fabrication skills from prior coursework. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)